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ABSTRACT
Individual characteristics and informal social processes are among
the factors that contribute to a student’s performance in an aca-
demic context. Universities can leverage this knowledge to limit
drop-out rates and increase performance through interventions
targeting at-risk students. Data-driven recommendation systems
have been proposed to identify such students for early interven-
tions. However, as we show in this paper, it is possible to identify
certain groups of students whose performance is best predicted
using indicators that differ from those predictive for the majority.
Naïve approaches that do not account for this fact might favor the
majority class and lead to disparate mistreatment in the case of mi-
norities. In this paper we investigate the low academic performance
predictors of female and male participants of the Copenhagen Net-
works Study. We find that social indicators (e.g. mean grade point
average of peers or fraction of low-performing peers) predict low-
performance of male participants more accurately than they do for
female participants, and that this situation is reversed for individual
behaviors. Because of the gender imbalance among the participants,
optimal gender-oblivious models detect low-performing male stu-
dents with higher accuracy than low-performing female students.
We review the existing approaches to addressing the disparate mis-
treatment problem and propose our own method that outperforms
the alternatives on the dataset in question.
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1 INTRODUCTION
One of the central driving forces behind the adoption of algorithmic
decision-making is the goal of eliminating biases from the decision
process. However, it has recently been shown that these algorithms
can have the opposite effect, possibly as a consequence of how the
data is mined [2]. Algorithmic biases have been demonstrated in
the systems that make decisions (or aid the human decision making
process) in areas as diverse as loans [10], parole [12], hiring [10],
and policing [15].
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A growing body of fairness research emphasizes a range of prob-
lems with black box algorithms. There exist multiple definitions
of fairness, some of which have been shown to be mutually ex-
clusive [9]. The discussion is especially heated around disparate
mistreatment: a situation in which error rates in a decision making
process are not balanced between representatives of a particular
characteristic (e.g. gender or race). Angwin et. al. [12] argued that
the system judges use as an assistant in their parole decisions is
more likely to wrongly imprison blacks than whites. The article
provoked a series of responses, which argued that the system was
indeed fair, but according to a different definition of fairness [6, 8].
The notion of disparate mistreatment was formalized by Zafar et al.
in a recent article which also introduces an approach of solving the
problem through constrained training of the classifier [23].

Independently of the research on fairness, there is increasing
interest in data-driven predictions of academic performance and
intervention recommendations. For example Balfanz, et al. [1] pro-
posed a system based on school records that recommends targeted
interventions to activate students at high risk of dropping out from
high school. More recently, Wang et al. [21] showed that the aca-
demic performance can also be predicted from behavioral data
collected using smartphones. In a student population we studied
recently, social indicators proved to be more predictive of academic
performance than the behavior or characteristics of the individ-
ual [14]. These social factors (including mean grade point aver-
age of peers and the fraction of low-performing peers) were more
highly correlated with an individual performance than, for example,
class attendance. In this paper, we ask whether these findings hold
equally for men and women in the dataset. Further, we ask whether
a model built on these features works equally well for the two
sexes. Finally, we review the existing methods of avoiding disparate
mistreatment and propose a novel approach, based on constrained
forward feature selection. Instead of optimizing the classifier for
best overall performance, we constrain the training process by pro-
gressively adding features so that the model maintains comparable
performance for all groups of the protected feature (i.e. for men and
women). While this simple approach might not work on datasets
where balanced features are absent, it does outperform other meth-
ods on our dataset. Of course, while our method can accurately
identify low-performing male and female students, recommending
particular interventions lies beyond the scope of this study.
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Table 1: Summary statistics of the dataset. There is no statis-
tically significant difference between performance among
men and women in the study (pval = 0.65 in Kolomogorov-
Smirnov test)

Performance
Low Medium High Total

Male 142 141 137 420
Female 38 39 43 120
Total 180 180 180 540

2 METHODS
2.1 Data
The data used in this paper was collected as part of the Copen-
hagen Networks Study (CNS), a large scale computational social
science study designed to measure human interactions and mobility
with high resolution [20]. The approximately 800 participants of
the study were freshmen and sophomores at the Technical Uni-
versity of Denmark. After responding to an online questionnaire
on psychological and health indicators, they were equipped with
an instrumented smartphone (Google Nexus 4) that—with their
consent—tracked their location, proximity to other participants,
and communication instances (metadata of short messages and
calls, without the content). Finally, the vast majority of the par-
ticipants (717 out of 839) opted in to share their Facebook data as
well, which was acquired using Facebook API. The data collection
campaign lasted two years. In this study we focus on participants
who interacted with at least three other subjects through phone
calls, short messages, face to face, and on Facebook. There are 420
men and 120 women in the dataset, and this gender imbalance
corresponds to the imbalance in the overall student population. We
divide the students into three equally-sized groups based on their
GPA after two years. Table 1 presents summary statistics.

We derive a number of variables in the following feature cate-
gories:

Individual behaviors. Class attendance is computed from lo-
cation data combined with class schedule using the method
we previously described [13]; it corresponds to the fraction of
lectures and exercises a student attended within the courses
they signed up for. Facebook activity score is defined as the
mean number of status updates a student posted in a week
during the duration of the observation.

Individual characteristics. This dataset was obtained through
an online questionnaire and includes: The Big Five [11] (neu-
roticism, openness, conscientiousness, extraversion, agreeable-
ness), Rotter’s Locus of Control [18], stress [4], self-esteem [17],
satisfaction with life [5], PANAS (positive and negative) [22],
loneliness [19], depression [3], and narcissism (rivalry, admi-
ration, overall) [7].

Network characteristics. Degree centralitymeasures, one for
each of four interactions networks: in physical space (person-
to-person proximity measured using Bluetooth), calls and
short message exchanges, and Facebook interactions.

Peer performance. Knowing the underlying social networks
(proximity, phone communication, and Facebook) as well as

the grades of each participant, we computed themean GPA of
each persons’ peers, as well as fraction of low/high-performers
(two features for each interaction network).

2.2 Classifier training
In each problem, we train a common classifier, oblivious to gender.
We use k-fold cross-validation with k = 3 (due to the low number of
female samples in the dataset we maintained a small k to avoid folds
with no women). In each test fold, we calculate the performance
on (a) all test samples, (b) only male samples, and (c) only female
samples, and report these in figures. As we showed in our previous
work [14], Linear Discriminant Analysis (LDA) is the machine
learning approach that achieves the highest results with the dataset
(compared against logistic regression, random forest, and SVC).
We tune hyper-parameters through grid search cross-validation
separately for each feature-set.

3 RESULTS
3.1 Detecting low-performing students
We divide students into three equally sized groups based on their
grade point average (GPA): low-, mid-, and high-performing stu-
dents. In this article we focus on identifying low performing stu-
dents. Hence, we rephrase the problem as a binary classification
task, where the target class are the low-performers, consisted with
identifying students to intervene. We then use four fine-tuned LDA
models to predict student performance each based on a different
feature-set: individual characteristics, individual behaviors, net-
work centrality, and peer performance. We then combine first two
categories and train the ‘individual’ model; we combine the third
and fourth sets and train the ‘network’ model. We then combine
all features into a ‘combined’ model.

As shown in Figure 1, peer-performance is a good predictor
of low performance amongst men, but the signal is weaker for
female students. Combining the individual and network features
into a common model results in a gap in predictive performance
between men and women (AUC ROC = 0.84 and 0.67, respectively).
To better illustrate this effect, we investigate example cumulative
distributions of social and individual features among the genders
with respect to performance, see Figure 2.

3.2 Fair predictions through feature selection
Now we build a model which maximizes a prediction performance
metric in the low-performers’ detection problem, while constrain-
ing the difference of performance between genders. We adapt a
forward feature selection strategy: we start by selecting the feature
that has the highest predictive power for the entire population
while satisfying the requirement given in Eq. 1:

|Pm − Pw |

Ptotal
≤ ϵ, (1)

where ϵ is a parameter controlling how much inter-gender differ-
ence we are willing to allow, and P is the selected performance met-
ric, for example area under receiver characteristic curve (AUC ROC),
or Matthew’s Correlation Coefficient (MCC). We then add more
features, one by one, in a way that the new model has increasing P
score and satisfies the requirement from Eq. 1.
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Figure 1: Low-performers’ detection. Peer-performance is an efficient predictor of low performance amongst men, but the
signal is much weaker for female students. Note, that the AUC ROC of a random classifier would be equal to 0.5, so all feature
categories provide signal related to low academic performance.
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Figure 2: We use the Kolmogorov-Smirnov test on cumula-
tive distribution functions (CDF) of two features (fraction
of low-performing peers in the text network, and class atten-
dance) to measure how dissimilar low-performing students
of each gender are from the high performers. We find larger
differences for men than women in the peer performance
feature. However, the difference is larger for women in the
individual behavior feature. Annotated are the results of K-
S test, marked with the (*) symbol wherever significant with
pval < 0.05.

Figure 3 shows the results of training such fair classifiers. It em-
phasizes the trade-off between overall performance and fairness: the
bigger the allowed difference between genders, the higher the over-
all performance. Typically, in binary classification tasks AUC ROC
is used to measure the performance of the classifier. In this case,
however, using AUC ROC might be misleading: it summarizes the
performance of a classifier at all thresholds, but a classifier put to
use would have to operate at a chosen threshold. Even if AUC ROC
scores are balanced, the classifier at a particular threshold might
still suffer from the disparate mistreatment problem. Therefore, we

perform the constrained forward feature selection using Matthew’s
correlation coefficient [16]. It quantifies the performance at a thresh-
old and—contrary to the popularly used F1 score—penalizes the
classifier for classifying all samples as the target class (such a clas-
sifier on this dataset hasMCC = 0 and F1 = 0.5). We defineMCC
in Eq 2.

MCC =
TP ·TN − FP · FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
, (2)

3.3 Alternative approaches
Figure 4 compares the results achieved through constrained forward
feature selection (CFFS), the method proposed by Zafar et al. [23],
re-balancing the dataset, as well as training separate models for men
and women. Because of too few female subjects in the data, training
separate models results in severe penalty on performance of the
female-only model. Re-balancing the dataset as well as the approach
proposed by Zafar et al. [23] achieve better results. Constrained
forward feature selection achieves high and nearly equalMCC for
both genders.

4 DISCUSSION
In this work we showed that empirical data can be more predictive
for a one group of subjects than other groups, and the problem
might go unnoticed unless specifically investigated. The situation
we described is not simply the case of imbalance, as re-balancing the
data does not solve the issue. Instead, we found that fair learning
can be achieved by only learning on selected features. The solution
is not generalizable to all datasets–depending on the problem, there
might be no features that perform similarly well for representants of
all classes among the protected feature. We tested our approach on
other datasets. It fails, for example, to solve the disparate mistreat-
ment problem in the COMPAS dataset [12], where all predictive
features achieve higher performance for one of the races. Therefore,
rather than recommending our approach for use in all scenarios,
we limit our conclusion to emphasizing the need for considering
the diversity of users in machine learning systems.



FATREC’17, August 2017, Como, Italy P. Sapiezynski et al.

1 2 3 4 5 6 7 8

0.2

0.3

0.4

0.5

M
CC

A
= 0.05 = 0.10 = 0.20 = 1.00

1 2 3 4 5 6 7 8

= 0.05

B

1 2 3 4 5 6 7 8
Number of features

= 0.10

C

1 2 3 4 5 6 7 8

= 0.20

D
overall men women

1 2 3 4 5 6 7 8

= 1.00

E

Figure 3: Learning fair classifiers. In each step we extend the model with a feature to maximize the overall performance of
the classifier while maintaining the maximum disparity ϵ between genders. ϵ = 1means there is no constraint on parity. Note,
that a constrained classifier has a higher performance for the underrepresented class than the unconstrained classifier. Note
that for a random classifierMCC = 0. The selection process stops when nomore features can be added to improve performance
while maintaining performance parity, hence a possible difference in the number of features used depending on ϵ .
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Figure 4: Alternative approaches to learning fair classifiers.
On the dataset in question, the constrained forward feature
selection (CFFS) method outperforms other approaches.
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