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Abstract
We study six months of human mobility data, including WiFi and GPS traces recorded with

high temporal resolution, and find that time series of WiFi scans contain a strong latent loca-

tion signal. In fact, due to inherent stability and low entropy of human mobility, it is possible

to assign location to WiFi access points based on a very small number of GPS samples and

then use these access points as location beacons. Using just one GPS observation per day

per person allows us to estimate the location of, and subsequently use, WiFi access points

to account for 80% of mobility across a population. These results reveal a great opportunity

for using ubiquitous WiFi routers for high-resolution outdoor positioning, but also significant

privacy implications of such side-channel location tracking.

Introduction
Due to the ubiquity of mobile devices, the collection of large-scale, longitudinal data about
human mobility is now commonplace [1]. High-resolution mobility of individuals and entire
social systems can be captured through a multitude of sensors available on modern smart-
phones, including GPS and sensing of nearby WiFi APs (access points or routers) and cell tow-
ers. Similarly, mobility data may be collected from systems designed to enable communication
and connectivity, such as mobile phone networks or WiFi systems (e.g. at airports or on com-
pany campuses) [2, 3]. Additionally, large companies such as Google, Apple, Microsoft, or Sky-
hook, combine WiFi access points with GPS data to improve positioning [4], a practice known
as ‘wardriving’. While widely used, the exact utility and mechanics of wardriving are largely
unknown, with only narrow and non-systematic studies reported in the literature [5, 6]. As a
consequence, it is generally not known howWiFi networks can be used for sensing mobility on
a societal scale; this knowledge is proprietary to large companies.

In the scientific realm, the mobility patterns of entire social systems are important for
modeling spreading of epidemics on multiple scales: metropolitan networks [7–9] and global
air traffic networks [10, 11]; traffic forecasting [12]; understanding fundamental laws govern-
ing our lives, such as regularity [13], stability [14], and predictability [15]. Predictability and
stability of human mobility are also exploited by commercial applications such as intelligent
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assistants; for example Google Now [16] is a mobile application, which learns users’ habits to,
among other services, conveniently provide directions to the next inferred location.

Mobility traces are highly unique and identify individuals with high accuracy [17]. Sensitive
features can be extracted from mobility data, including home and work locations, visited
places, or personality traits [18]. Moreover, location data are considered the most sensitive of
all the commonly discussed personal data collected from or via mobile phones [19].

Here, we show that a time sequence of WiFi access points is effectively equal to location
data. Specifically, having collected both GPS and WiFi data with high temporal resolution
(median of 5 minutes for GPS and 16 seconds for WiFi) in a large study [20], we use six months
of data for 63 participants to model how lowering the rate of location sampling influences our
ability to infer mobility. The study participants are students with heterogeneous mobility pat-
terns. They all attend lectures on campus located outside of the city center, but live in dormito-
ries and apartments scattered across the metro area at various distances from the university.

By mapping the WiFi data, we are able to quantify details of WiFi-based location tracking,
which are usually not available to the general public. We find that the geo-positioning inferred
fromWiFi access points (APs or routers) could boost efficacy in other data collection contexts,
such as research studies. In addition, our findings have significant privacy implications, indi-
cating that for practical purposes WiFi data should be considered location data. As we argue in
the following sections, this finding is not recognized in current practices of data collection and
handling.

Methods

The dataset
Out of the 130+ participants of the study [20], we selected 63 for which at least 50% of the
expected data points are available. The methods of collection, anonymization, and storage of
data were approved by the Danish Data Protection Agency, and complies both with local and
EU regulations. Written informed consent was obtained via electronic means, where all invited
participants read and digitally signed the form with their university credentials. The median
period of WiFi scans for these users was 16 seconds, and the median period of GPS sampling
was 10 minutes. The data spans a period of 200 days from October 1st, 2012 to April 27th,
2013.

Known routers and coverage
In the article we use a simple model of locating the WiFi routers. We consider an access point
as known if it occurred in a WiFi scan within one second of a GPS location estimation. The
shortcomings of this approach and possible remedies are described in more detail in S1 File.

We define time coverage as a fraction of ten-minute bins containing WiFi data in which at
least one known router was scanned. For example, let us assume that the user has data in 100
out of 144 timebins during a day, and in 80 of these timebins there is a known router visible.
Therefore, that user’s coverage for that day is 80%. The average time coverage for a day is the
mean coverage of all users who had any WiFi information in that day. This way our results are
independent from missing data caused by imperfections in data collection system deployed in
the study.

In Fig 1 we present three different approaches to sampling, which we describe here in detail.
Initial-period sampling.As presented in Fig 1a, we learn the location of the routers sequentially.
With each GPS location estimation accompanied with aWiFi scan, we add the visible access
points to the list of known routers. The learning curve can be observed for the first seven days
(Fig 1a, left panel) or the first 28 days (Fig 1a, right panel). Random subsampling. In the random
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subsampling scenario we select a set fraction of available GPS location estimations, each paired
with aWiFi scan. Each GPS estimation provides information on the position of all routers seen
in the paired scan. This scenario can be realized after the data collection is finished, as the loca-
tion estimations are used to locate theWiFi scans which happened both before and after said esti-
mations. The results are presented in Fig 1b. Top routers.We select the top routers in a greedy
fashion after the data collection is finished. We sort the routers in descending order by the

Fig 1. The time coverage provided by the routers with known position depends on who collects the corresponding location data and when it
happens. In each subplot the orange line describes the scenario where each individual collects data about themselves and does not share it with others; the
blue line corresponds to a system in which the location of routers discovered by one person is made known to other users; the green line presents a situation
where each individual can use the common pool of known routers but does not discover access points herself. a. Stability of location. Learning the location
of APs seen during the first seven (left panel) or 28 (right panel) days, leads to performance gradually decreasing with time in the personal case (orange line).
The histograms of time coverage distribution for day 190 show that this decline is driven by a growing number of people who spend only*10% of time in the
locations they visited in the beginning of the observation. The global approach (blue line) does not show this tendency, which indicates that people rotate
between common locations rather than moving to entirely new places. b, c. Representativeness of randomly selected locations. Random subsampling
with an average period of 24 hours (less than 1% of all available location estimations) is sufficient to find the most important locations in which people spend
more than 80% of their time; using an average period of 4 hours (2.5% percent of all available location data) results in*85% coverage. The personal
database does not expire since the location is sampled throughout the experiment, not only in the beginning. d. Limited number of important locations.
Although querying commercial services for WiFi geolocation is costly, knowing the location of only the 20 most prevalent routers per person in the dataset
results in an average coverage of*90%. Since people’s mobility overlaps, there is a benefit of using a global database rather than treating all mobility
disjointly.

doi:10.1371/journal.pone.0130824.g001
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number of user timebins they occur in. We choose the top one router, and then we select the
routers which provide the biggest increase in the number of user timbebins covered. Due to high
density of access points, each semantic place is described by presence of several routers, but loca-
tion of only one of them has to be established to find the geographic position of the place. In this
sampling method we do not rely on our own GPS data—top routers are found purely based on
their occurrence in the WiFi scans, regardless of availability of GPS scans within the one second
time delta. The results of such sampling are presented in Fig 1e.

Data collection scenarios
Each subplot in Fig 1 contains series coming from three different simulated collection scenar-
ios. In the global scenario, there is a pool of WiFi routers locations estimations coming from
all users, and a router is considered known if at least one person has found its location. This
scenario simulates the function of such services as for example mobile Google Maps. In the
personal scenario each user can only use their own data, a router can be known to them only if
they found its location themselves. It simulates collecting data in a disjoint society, where each
person frequents different locations. Finally, in the global with no personal data scenario,
each user can exploit estimations created by everybody else, but without contributing their
own data.

Results
Ubiquitously available WiFi access points can be used as location beacons, identifying locations
based on BSSID (basic service set identifier, uniquely identifying every router) broadcast by
APs. These locations are not intrinsically geographical, as the APs do not have geographical
coordinates attached. However, since the placement of APs tends to remain fixed, mapping an
AP to a location where it was seen once is sufficient to associate all the subsequent scans from
the user device with geographical coordinates. See S1 File for details on inferring the geographi-
cal locations of routers, as well as identifying (and discarding data from) mobile access points.

WiFi networks are ubiquitous. In our population, 92% of all WiFi scans detect at least one
access point, and 33% detect more than 10 APs, as shown in Fig 2c. In densely-populated areas,
an average of 25 APs are visible in every scan, with population density explaining 50% of the
variance of the number of APs, as shown in Fig 2b. WiFi scans containing at least one visible
AP can be used for discovering the location of the user, with a typical spatial resolution on the
order of tens of meters.

We investigate three approaches to using access points as location beacons, all of which
enable WiFi-based location tracking even with limited resources: (1) recovering APs’ locations
from mobility traces collected during an initial training period (exploiting the long-term stabil-
ity of human mobility), (2) recovering APs’ locations from randomly sampled GPS updates
(exploiting low entropy of human mobility, see S1 File for distinction between stability and low
entropy), and (3) using only the most frequently observed APs for which location can be feasi-
bly obtained from external databases. The task is to efficiently assign geographical coordinates
(latitude and longitude) to particular APs, so they can be used as beacons for tracking user’s
location. In the following sections, we refer to time coverage as the fraction of ten-minute time-
bins, in which at least one router with a known location is observed.

Stability of human mobility allows for efficient WiFi-based positioning
Human mobility has been shown to remain stable over long periods of time [13]. We find that
participants in our study have stable routines, with locations visited in the first one, two, three,
and four weeks of the study still visited frequently six months later. Learning the locations of
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routers seen during the first seven days (corresponding to*3.5% of the observations, shown
in Fig 1a, left panel) provides APs’ locations throughout the rest of the experiment sufficient
for recovering*55% of users mobility until the Christmas break around days 75–90. When
the location of routers seen by each person is inferred using only this person’s data (the per-
sonal-only WiFi database case, shown using an orange line in Fig 1), the information expires
with time: there is a stable decrease in time coverage after Christmas break. This decline is evi-
dent both when a week (Fig 1a, left panel) and four weeks (right panel) are used for training,
with the time coverage dropping*18 percentage points between days 60 and 160. The histo-
grams above each plot show the distribution of time coverage in selected points in time (at 7,
80, 190 days respectively). The distribution for day 190 reveals that the expiry of the personal
database validity is driven by individuals who significantly altered routines, with 40% of partic-
ipants spending only around 10% of time in locations they have visited in the first week. In
contrast, when the inferred locations of routers are shared among people (the global database
case, represented by a blue line) the information does not expire and shows no decreasing
trend during the observation period. This implies that rather than moving to entirely new

Fig 2. WiFi routers are located where people live. a: Map of Greater Copenhagen Area, divided into parishes with color indicating average number of
routers discovered per scan; rectangle overlay indicates the city center. b: The number of access points visible in each scan is correlated with the population
density (r2 = 0.5). Even in low population density areas there are several routers visible on average in each scan. Therefore, knowing the positions of only a
subset of routers is enough for precise location sensing. c: Distribution of number of routers per scan. In our dataset 92% of scans contain at least one router.

doi:10.1371/journal.pone.0130824.g002
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locations, people begin to visit places that are new to them, but familiar to other participants.
The histograms of time coverage distribution in both panels of Fig 1a reveal that the individuals
are heterogeneous in their mobility. The coverage in most cases is highly affected in the non-
personal case (where the person does not collect their own location information, but data from
others is used, marked using green in the figures), but 20% of participants retain a coverage of
above 80% throughout the observation period, see Fig 1a, left panel. People living and working
close to each other (like students in a dormitory) share a major part of their mobility and thus
location of the APs they encounter can be estimated using data collected by others.

The demonstrated stability of human mobility patterns over long periods has real-life pri-
vacy implications. Denying a mobile application access to location data, even after a short
period, may not be enough to prevent it from tracking user’s mobility, as long as its access to
WiFi scans is retained.

Human mobility can be efficiently captured using infrequent location
updates
Sampling location randomly across time (Fig 1b), rather than through the initial period (Fig
1a) provides a higher time coverage, which is retained throughout the observation. With
around one sample per day per person on average, the location can be inferred 80% of the time
in case of global lookup base and 70% in personal case (see Fig 1c, at training fraction of 0.007).

The histograms in Fig 1b confirm that distribution of coverage in the non-personal case is
bimodal within our population: mobility of some individuals can effectively be modeled using
data from people around them, while patterns of others are so distinct they require using self-
collected information. The single-mode distribution of coverage in the personal case and the
fact that the distribution is unchanged between day 7 and day 190 show the lack of temporal
decline when sampling happens throughout the observation period.

The GPS sensor on a mobile device constitutes a major battery drain when active [21],
whereas the WiFi frequently scans for networks by default. Our results show that GPS-based
location sampling rate can be significantly reduced in order to save battery, while retaining
high resolution location information through WiFi scanning. Our analyses also point to
another scenario where WiFi time series can result in leaks of personal information. Infrequent
location data can be obtained from a person’s (often public) tweets, Facebook updates, or other
social networking check-ins and then matched with their WiFi records to track their mobility.

Overall human mobility can be effectively captured by top WiFi access
points
As previously suggested [15], people’s mobility has low entropy and thus a few most prevalent
routers can work effectively as proxies for their location. Fig 1d shows that inferring the loca-
tion of just 20 top routers per person on average (which, given the median count of 22 000
routers observed per person, corresponds to 0.1% of all routers seen) translates to knowing the
location of individuals 90% of the time. Since our population consists of students, who attend
classes in different lecture halls in various buildings across the campus, we expect that the num-
ber of access points necessary to describe mobility of persons with a fixed work location can be
even lower. There are persons in our study, for whom just four access points correspond to
90% of time coverage (see Fig D in S1 File for details).

That the mobility of individuals in our sample overlaps is apparent in Fig 1d as the time cov-
erage of three top routers in the personal case is the same as in the global coverage using the
total of 80 routers (instead of 189 disjoint routers).
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As a consequence, a third party with access to records of WiFi scans and no access to loca-
tion data, can effectively determine the location of each individual 90% of time by sending less
than 20 queries to commercial services such as Google Geolocation API or Skyhook.

Single-user analysis
To illustrate the ubiquity of WiFi access points and how effectively they can be used to infer
mobility patterns, we present a small example dataset containing measured and inferred loca-
tion information of one of the authors, collected over two days. During the 48 hours of obser-
vation, the researcher’s phone was scanning for WiFi with a median period of 44 seconds,
measuring on average 19.8 unique devices per scan, recording 3 822 unique access points. Only
one scan during the 48 hours was empty, and one scan yielded 113 unique results. Fig 3a shows
the corresponding GPS trace collected with a median sampling period of 5 minutes. When
dividing the 48 hours of the test period into 10 minute bins, a raw GPS trace provides location
estimation in 89% of these bins. Four stop locations are marked with blue circles and include
home, two offices, and a food market visited by the researcher. Fig 3b shows the estimation of
this trace based on the inferred locations of WiFi routers, see S1 File for detailed information
on the location inference. The four stop locations are clearly visible, but the transitions have
lower temporal resolution and errors in location estimations. This method provides location
information in 97% of temporal bins. Using WiFi increases overall coverage, but might intro-
duce errors in location estimation of routers which were only observed shortly, for example
during transition periods. Fig 3c shows the estimation of this trace based on the locations of
top 8 (0.2%) WiFi routers. The four important locations have been correctly identified, but
information on transitions is lost. Information in 95% of temporal bins is available. Finally, Fig
3d shows a graphical representation of how much time the researcher spends in any one of the
top eight locations during the observation time. Note that the first four locations account for
an overwhelming fraction of the 48 hours.

Knowing the physical position of the top routers and having access to WiFi information
reveals the location of the user for the majority of the timebins. The details of trajectories
become lost as we decrease the number of routers we use to estimate locations. With too few
routers might not be possible to determine which of possible routes the subject chose or how
long she took to travel through each segment of the trip. On the other hand, the high temporal
resolution of the scans allows for very precise discovery of arrival and departure times and of
time spent in transit. Such information has important implications for security and privacy, as
it can be used to discover night-watch schedules, find times when the occupants are not home,
or efficiently check work time of the employees.

Discussion
Our world is becoming progressively more enclosed in infrastructures supporting communica-
tion, mobility, payments, or advertising. Logs from mobile phone networks have originally
been considered only for billing purposes and internal network optimization; today they con-
stitute a global database of human mobility and communication networks [13]. Credit card
records form high-resolution traces of our spending behaviors [22]. The omnipresent WiFi
networks, intended primarily for communication, has now became a location tracking infra-
structure, as described here. The pattern is clear: every new cell tower, merchant with credit
card terminal, every new private or municipal WiFi network offer benefits to the connected
society, but, at the same time, create opportunities and perils of unexpected tracking. Cities
entirely covered by WiFi signal provide unprecedented connectivity to citizens and visitors
alike; at the same time multiple parties have to incorporate this fact in their policies to limit
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privacy abuse of such infrastructure. Understanding and quantifying the dynamics of privacy
and utility of infrastructures is crucial for building connected and free society.

Since the creation of comprehensive databases containing geolocation for APs is primarily
carried out by large companies [4], one might assume that WiFi based location tracking by
‘small players’, such as research studies or mobile applications, is not feasible. As we have
shown above, however, APs can be very efficiently geolocated in a way that covers a large
majority of individuals’mobility patterns.

Fig 3. 48 hours of location data of one of the authors, with the four visited locations visitedmarked in blue: home, two offices, and a foodmarket.
Even though the author’s phone has sensed 3 822 unique routers in this period, only a few are enough to describe the location more than 90% of time. a.
traces recorded with GPS; b. traces reconstructed using all available data onWiFi routers locations—the transition traces are distorted, but all stop locations
are visible and the location is known 97% of the time. c. with 8 top routers it is still possible to discover stop locations in which the author spent 95% of the
time. In this scenario transitions are lost. d. timeseries showing when during 48 hours each of the top routers were seen. It can be assumed that AP 1 is
home, as it’s seen every night, while AP 2 and AP 3 are offices, as they are seen during working hours. The last row shows the combined 95% of time
coverage provided by the top 8 routers.

doi:10.1371/journal.pone.0130824.g003
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In the results, we focused on outdoor positioning with spatial resolution corresponding to
WiFi AP coverage: we assume that if at least one AP is discovered in a scan, we can assign the
location of this AP to the user. This is a deliberately simple model, described in detail in S1 File,
but we consider the resulting spatial resolution sufficient for many aspects of research, such as
studying human mobility patterns. The spatial resolution of dozens of meters is higher than for
example CDR data [13], which describes the location with the accuracy of hundreds of meters
to a few kilometers. Incorporating WiFi routers as location beacons can aid research by drasti-
cally increasing temporal resolution without additional cost in battery drain.

Students live in multiple dormitories on and outside of campus, take multiple routes com-
muting to the university, frequent different places in the city, travel across the country and
beyond. While the students spend most of their time within a few dozens of kilometers from
their homes, they also make international and intercontinental trips (see Figs B and C in S1
File for details). Such long distance trips are not normally captured in studies based on telecom
operator data. Our population is densely-connected and in this respect it is biased, in the same
sense as any population of people working in the same location. We do simulate a scenario in
which the individuals do not form a connected group by analyzing the results for personal-
only database. We expect the obtained results to generalize outside of our study.

Our findings connect to an ongoing debate about the privacy of personal data [23]. Location
data has been shown to be among the most sensitive categories of personal information [19].
Still, a record of WiFi scans is, in most contexts, not considered a location channel. In the
Android ecosystem, which constitutes 85% of global smartphone market in Q2 2014 [24], the
permission for applications to passively collect the results of WiFi scans is separate from the
location permission; moreover, theWi-Fi connection information (ACCESS_WIFI_STATE)
permission is not considered ‘dangerous’ in the Android framework, whereas both high-accu-
racy and coarse location permissions are tagged as such [25]. While it has been pointed out
that Android WiFi permissions may allow for inference of sensitive personal information [26],
the effect has not been quantified through real-world data. Here we have shown that inferring
location with high temporal resolution can be efficiently achieved using only a small percentage
of the WiFi APs seen by a device. This makes it possible for any application to collect scanned
access points, report them back, and inexpensively convert these access points into users’ loca-
tions. The impact is amplified by the fact that apps may passively obtain results of scans rou-
tinely performed by Android system every 15–60 seconds. Such routine scans are even run
when the user disables WiFi. See S1 File for additional analysis on data privacy in the Android
ecosystem.

Developers whose applications declare both location andWiFi permissions are able to use
WiFi information to boost the temporal resolution of any collected location information. We
have shown that even if the location permission is revoked by the user, or removed by the app
developers, an initial collection of both GPS and WiFi data is sufficient to continue high-reso-
lution tracking of the user mobility for subsequent months. Many top applications in the Play
Store requestWi-Fi connection information but not explicit location permission. Examples
from the top charts include prominent apps with more than 100 million users each, such as
Candy Crush Saga, Pandora, and Angry Birds, among others. We are not suggesting that these
or other applications collect WiFi data for location tracking. These apps, however, do have a de
facto capability to track location, effectively circumventing Android permission model and
general public understanding.

Due to uniqueness of location traces, users can be easily identified across multiple datasets
[17]. Our results indicate that any application can use WiFi permission to link users to other
public and private identities, using data from Twitter or Facebook (based on geo-tagged tweets
and posts), CDR data, geo-tagged payment transactions; in fact any geo-tagged data set. Such
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cross-linking is another argument why WiFi scans should be considered a highly sensitive type
of data.

In our dataset, 92% of WiFi scans have at least one visible AP. Even in the most challenging
scenario, when there are no globally shared locations and each individual frequents different
places, top 20 WiFi access points per person can be efficiently converted into geolocations
(using Google APIs or crowd-sourced data) and used as a stable location channel. These results
should inform future thinking regarding the collection, use, and data security of WiFi scans.
We recommend that WiFi records be treated as strictly as location data.

Supporting Information
S1 File. Additional details on the properties of the data and the employed analysis methods.
In this Supporting File we present an example method of inferring the locations of WiFi rout-
ers, explain the interplay between the long term stability and low entropy of human mobility,
provide a detailed description of the mobility properties of the participants (Figs B and C),
show the distributions of time coverage of top routers (Fig D), and explain how Android per-
mission model allows apps to access the WiFi information of the user.
(PDF)

Acknowledgments
We thank Yves-Alexandre de Montjoye and Andrea Cuttone for useful discussions.

Author Contributions
Conceived and designed the experiments: SL AS PS. Performed the experiments: PS AS RG.
Analyzed the data: PS RG. Wrote the paper: PS AS RG SL.

References
1. Lazer D, Pentland AS, Adamic L, Aral S, Barabasi AL, Brewer D, et al. Life in the network: the coming

age of computational social science. Science (New York, NY). 2009; 323(5915):721. doi: 10.1126/
science.1167742

2. Lim CH, Wan Y, Ng BP, See C. A real-time indoor WiFi localization system utilizing smart antennas.
Consumer Electronics, IEEE Transactions on. 2007; 53(2):618–622. doi: 10.1109/TCE.2007.381737

3. Ferris B, Haehnel D, Fox D. Gaussian processes for signal strength-based location estimation. In: In
Proc. of Robotics Science and Systems. Citeseer; 2006..

4. Skyhook: Coverage map;. http://bit.ly/1twmdEr.

5. Rekimoto J, Miyaki T, Ishizawa T. LifeTag:WiFi-based continuous location logging for life pattern analy-
sis. In: LoCA. vol. 2007; 2007. p. 35–49.

6. Kawaguchi N. WiFi Location Information System for Both Indoors and Outdoors. In: Distributed Com-
puting, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. Springer;
2009. p. 638–645.

7. Eubank S, Guclu H, Kumar VA, Marathe MV, Srinivasan A, Toroczkai Z, et al. Modelling disease out-
breaks in realistic urban social networks. Nature. 2004; 429(6988):180–184. doi: 10.1038/nature02541
PMID: 15141212

8. Sun L, Axhausen KW, Lee DH, Cebrian M. Efficient detection of contagious outbreaks in massive met-
ropolitan encounter networks. Scientific Reports. 2014; 4.

9. Liang X, Zhao J, Dong L, Xu K. Unraveling the origin of exponential law in intra-urban human mobility.
Scientific reports. 2013; 3. doi: 10.1038/srep02983

10. Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A. Modeling the Worldwide Spread of Pan-
demic Influenza: Baseline Case and Containment Interventions. PLoS Med. 2007 01; 4(1):e13. Avail-
able from: http://bit.ly/1w6k6bB. doi: 10.1371/journal.pmed.0040013 PMID: 17253899

Tracking Human Mobility Using WiFi Signals

PLOS ONE | DOI:10.1371/journal.pone.0130824 July 1, 2015 10 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130824.s001
http://dx.doi.org/10.1126/science.1167742
http://dx.doi.org/10.1126/science.1167742
http://dx.doi.org/10.1109/TCE.2007.381737
http://bit.ly/1twmdEr
http://dx.doi.org/10.1038/nature02541
http://www.ncbi.nlm.nih.gov/pubmed/15141212
http://dx.doi.org/10.1038/srep02983
http://bit.ly/1w6k6bB
http://dx.doi.org/10.1371/journal.pmed.0040013
http://www.ncbi.nlm.nih.gov/pubmed/17253899


11. Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world. Proceed-
ings of the National Academy of Sciences of the United States of America. 2004; 101(42):15124–
15129. doi: 10.1073/pnas.0308344101 PMID: 15477600

12. Kitamura R, Chen C, Pendyala RM, Narayanan R. Micro-simulation of daily activity-travel patterns for
travel demand forecasting. Transportation. 2000; 27(1):25–51. doi: 10.1023/A:1005259324588

13. Gonzalez MC, Hidalgo CA, Barabasi AL. Understanding individual human mobility patterns. Nature.
2008; 453(7196):779–782. doi: 10.1038/nature06958 PMID: 18528393

14. Lu X, Bengtsson L, Holme P. Predictability of population displacement after the 2010 Haiti earthquake.
Proceedings of the National Academy of Sciences. 2012;Available from: http://bit.ly/1yHpJiC.

15. Song C, Qu Z, BlummN, Barabási AL. Limits of predictability in human mobility. Science. 2010; 327
(5968):1018–1021. doi: 10.1126/science.1177170 PMID: 20167789

16. Google Now;. http://bit.ly/1cz8Rlu.

17. de Montjoye YA, Hidalgo CA, Verleysen M, Blondel VD. Unique in the Crowd: The privacy bounds of
human mobility. Scientific reports. 2013; 3. doi: 10.1038/srep01376 PMID: 23524645

18. de Montjoye YA, Quoidbach J, Robic F, Pentland AS. Predicting personality using novel mobile phone-
based metrics. In: Social Computing, Behavioral-Cultural Modeling and Prediction. Springer; 2013. p.
48–55.

19. Staiano J, Oliver N, Lepri B, de Oliveira R, Caraviello M, Sebe N. Money walks: a human-centric study
on the economics of personal mobile data. In: Proceedings of the 2014 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing. ACM; 2014. p. 583–594.

20. Stopczynski A, Sekara V, Sapiezynski P, Cuttone A, Madsen MM, Larsen JE, et al. Measuring Large-
Scale Social Networks with High Resolution. PLoS ONE. 2014 04; 9(4):e95978. Available from: http://
bit.ly/1jWczTL. doi: 10.1371/journal.pone.0095978 PMID: 24770359

21. Love R. Why Does GPS Use More Battery Than Any Other Antenna Or Sensor In A Smartphone?;
2013. http://onforb.es/1oKOVeJ.

22. Krumme C, Llorente A, Cebrian M, Pentland A, Moro E. The predictability of consumer visitation pat-
terns. Scientific reports. 2013; 3. doi: 10.1038/srep01645 PMID: 23598917

23. Strandburg KJ, Barocas S, Nissenbaum H, Acquisti A, Ohm P, Stodden V, et al. Privacy, big data, and
the public good: frameworks for engagement. Cambridge University Press; 2014.

24. Smartphone OSMarket Share, Q2 2014;. http://bit.ly/1nSjC4A.

25. Android Source Code;. http://bit.ly/1zu7Ghd.

26. Achara JP, Cunche M, Roca V, Francillon A. Short Paper: WifiLeaks: Underestimated Privacy Implica-
tions of the AccessWifi State Android Permission. In: Proceedings of the 2014 ACMConference on
Security and Privacy in Wireless and Mobile Networks. WiSec’14. New York, NY, USA: ACM; 2014.
p. 231–236.

Tracking Human Mobility Using WiFi Signals

PLOS ONE | DOI:10.1371/journal.pone.0130824 July 1, 2015 11 / 11

http://dx.doi.org/10.1073/pnas.0308344101
http://www.ncbi.nlm.nih.gov/pubmed/15477600
http://dx.doi.org/10.1023/A:1005259324588
http://dx.doi.org/10.1038/nature06958
http://www.ncbi.nlm.nih.gov/pubmed/18528393
http://bit.ly/1yHpJiC
http://dx.doi.org/10.1126/science.1177170
http://www.ncbi.nlm.nih.gov/pubmed/20167789
http://bit.ly/1cz8Rlu
http://dx.doi.org/10.1038/srep01376
http://www.ncbi.nlm.nih.gov/pubmed/23524645
http://bit.ly/1jWczTL
http://bit.ly/1jWczTL
http://dx.doi.org/10.1371/journal.pone.0095978
http://www.ncbi.nlm.nih.gov/pubmed/24770359
http://onforb.es/1oKOVeJ
http://dx.doi.org/10.1038/srep01645
http://www.ncbi.nlm.nih.gov/pubmed/23598917
http://bit.ly/1nSjC4A
http://bit.ly/1zu7Ghd

