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THEBIGGERPICTURE Proportionality, ensuring that the data collected are relevant for the purposes of the
processing is a key tenet of modern data protection laws, such as the EU General Data Protection Regula-
tion. Evaluating proportionality when ‘‘small-scale’’ data are collected can already be difficult. This only be-
comes harder when entering the realm of ‘‘big data’’ and, in particular, (big) networked data. Indeed, a lot of
data collected today intrinsically relate to more than one person. This includes social network data,
messaging data, and close proximity data. Froma data protection perspective, thismeans that even though
data about only a handful of people are collected, information aboutmanymore peoplemight be included in
the dataset. This is what happened with Cambridge Analytica: through 270,000 accounts they collected
data about 68.0M people. So far, we have not had a tool to estimate the number of people affected by net-
worked data collection. We propose and validate such a tool.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Despite proportionality being one of the tenets of data protection laws, we currently lack a robust analytical
framework to evaluate the reach of modern data collections and the network effects at play. Here, we pro-
pose a graph-theoretic model and notions of node- and edge-observability to quantify the reach of net-
worked data collections. We first prove closed-form expressions for our metrics and quantify the impact
of the graph’s structure on observability. Second, using ourmodel, we quantify how (1) from 270,000 compro-
mised accounts, Cambridge Analytica collected 68.0M Facebook profiles; (2) from surveilling 0.01% of the
nodes in a mobile phone network, a law enforcement agency could observe 18.6% of all communications;
and (3) an app installed on 1% of smartphones could monitor the location of half of the London population
through close proximity tracing. Better quantifying the reach of data collection mechanisms is essential to
evaluate their proportionality.
INTRODUCTION

For reasons ranging from the democratization of communication

technologies1 to urbanization and rural exodus, we are today

more connected than ever. The fraction of the population living

in cities is increasing and projected to reach 68%by 2050,2 while

the average worldwide degree of separation dramatically shrank

from 6 steps in 1969 to 3.5 steps today.3–6 Many positive

network effects arise from such connectedness, including
This is an open access article und
increased average GDP7,8 and number of patents produced

per capita,9 and an accelerated diffusion of information.10,11

Network science emerged as a field to study human and soci-

eties through the lens of our connections.12

This connectedness, however, impacts our privacy as, in

modern systems, (1) data often relate to more than one person

(e.g., a text sent between two people) and (2) people often collect

or have access to data about their friends and people around

them (e.g., bluetooth close-proximity data). In both cases, the
Patterns 4, 100662, January 13, 2023 ª 2022 The Author(s). 1
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Figure 1. Node- and edge-observability in a network with one pri-

mary node

The direct neighbors (light blue) of the primary node, and the edges between

the primary node and its neighbors are observable. The edges between the

light blue nodes are, however, not observable. In the 2-hop case, nodes that

are neighbors of nodes neighboring the primary node become observable.

Similarly, all edges incident to a neighbor of the primary node become

observable.
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network effects associated with modern connectedness often

strongly amplify the scope and privacy impact of data collec-

tions. Both the Snowden revelations13 and Cambridge Analy-

tica14 leveraged these network effects. Yet, despite these being

two of the major privacy scandals of the last decade, we

currently still lack the analytical tools to correctly assess the

reach and therefore proportionality of modern data collections.

Proportionality of data collections is one the tenets of data

protection laws, such as the European Union’s General Data

Protection Regulation (GDPR) and Law Enforcement Directive

(LED), and is an integral part of Privacy Impact Assessments

(PIAs). The European Data Protection Supervisor (EDPS), for

instance, states in its recent ‘‘Guidelines on assessing the pro-

portionality of measures that limit the fundamental rights to pri-

vacy and to the protection of personal data’’ that to evaluate

the proportionality of data collections one must assess both

the ‘‘number of people affected’’ and whether it ‘‘raises ‘collat-

eral intrusions,’ that is interference with the privacy of persons

other than the subjects of the measure.’’15 The importance

of proportionality was further emphasized in the context of

data collections by law enforcement agencies in the Opinion

01/2014 of the Article 29 Working Party, which emphasize the

need for ‘‘the scope of the proposed measure [to be] sufficiently

limited’’ in particular with respect to the ‘‘number of people

affected by the measure.’’

Here, we propose a graph-theoretic model to evaluate the

reach and therefore proportionality of modern data collections

and attacks. We define a general model to measure the privacy

loss for individuals when nodes in the network (the ‘‘primary’’ no-

des) have their data, anddata from their neighborhood, collected.

Such data collections include installing a malicious app, having

loose permissions on Facebook, and surrendering one’s phone

data to the authorities. We then define twometrics for the vulner-

ability of networks to these attacks, node- and edge-observ-

ability, reflecting what an attacker can learn. We prove closed-

form expressions for the observability of networks. Finally, we

show that (1) our model allows us to correctly estimate the num-

ber of Facebook accounts observed by Cambridge Analytica in

2014, using only the degree distribution of the graph; (2) under

current legislation, surveillanceof 0.01%randomphones in amo-

bile phone network would allow a law enforcement agency to tap
2 Patterns 4, 100662, January 13, 2023
18.6%of all communications occurring on that network; and (3) a

software installed on 1% of the smartphones in London would

enable its developer to monitor the hourly location of half of the

population through close-proximity tracing.
RESULTS

We consider an undirected graph G = ðV ;EÞ, where V is the set

of nodes and E is the set of undirected edges, i.e., unordered

pairs ðu; vÞ˛E with u; v˛V. The edge-set of node u, the set of

all its incident edges, is denoted by E½u�. We define Vp3V , the

set of primary nodes, as the set that an attacker has gained con-

trol of through a node-based data collection or attack, e.g., ama-

licious app on Facebook or on a mobile phone. We denote this

set’s size by np. This model applies to both attacks and legiti-

mate data collections, and we use these words interchangeably.

An attacker can access all communication between any primary

node v˛Vp and its neighbors fujðu; vÞ ˛E½u�g in the network

(phone calls, private messages, .), as well as any attributes

of v’s neighbors that are available to v (name, location, pro-

file, .). This results in a set of observed edges Eo and a set of

observed nodes Vo. In some scenarios, the adversary may also

observe nodes and edges located up to k hops away from the

primary node (see Figure 1).

Definition 1. Observed nodes. The set of observed nodes after

k hops, Vk
o , for a set Vp of primary nodes, contains all non-pri-

mary nodes that are at a shortest-path distance (noted d) at

most k from a primary node (where d denotes the shortest

path distance):

Vk
o
def =

�
u ˛ V\Vp : dv ˛ Vp;dðu; vÞ % k

�
Definition 2. Observed edges. The set of observed edges after

k hops Ek
o, for a set Vp of primary nodes, contains all edges that

are connected to at least one node within shortest-path distance

k � 1 of a primary node:

Ek
o
def =

�ðu; vÞ˛E : dw˛Vp;dðu;wÞ% k � 1ndðv;wÞ% k � 1g

For simplicity, we also define: Vo
def = Vo

1 and Eo
def = E1

o.

We then define two quantities to measure the reach of an

attack, which we call edge-observability and node-observability.

Edge-observability quantifies the amount of information trans-

mitted between nodes accessible to an attacker; while node-

observability quantifies the information about node attributes

that this attacker has access to. We also differentiate between

two different risks in both attack models: the privacy loss caused

by an attack on the whole network, r
ðkÞ
� ðG;npÞ, and by attacks on

one particular node u, r
ðkÞ
n;�ðG;np;uÞ, or edge e, r

ðkÞ
e;�ðG;np;eÞ.

Finally, we focus here on non-targeted node-based intrusions

as, in many real-world scenarios, including the ones we consider

here, such data collections or attacks are opportunistic rather

than targeted: people install an app, click on a phishing link

and enter their password, or pass by a malicious router in the

street. In both attacks, the set Vp is thus chosen uniformly at

random: the probability for a node to be part of the data collec-

tion is uniform. Non-random attacks, when appropriate, can,

however, be empirically studied using the same model. We

discuss this in supplemental information section S1.
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As all of our metrics depend on the number of primary nodes

np, we also introduce the average node- and edge-observability,

defined as 1
N

PN
np = 1fðG;npÞ for a metric f. This number summa-

rizes the observability curve and can be used as a measure of

how vulnerable the network is to node-intrusion attacks in

general.

Node-observability
The node-observability of a graph quantifies an attacker’s ability

to obtain knowledge about the attributes of a node through their

relationship with primary nodes. Such attacks could, for

instance, be conducted by malicious apps on social networks

exploiting loose permissions to obtain the installer’s friends

information.16

Definition 3. Probability of observation of a node. The k � hop

probability of observation of a node u, in a graphG = ðV ;EÞ, for
np primary nodes, r

ðkÞ
n;�ðG;np;uÞ, is defined as the probability that u

is observed, with the probability taken over all sets Vp of size np
such that u;Vp:

rðkÞn;�ðG;np; uÞ = P�Vp

�
u ˛ Vk

o

�� u;Vp^
��Vp

�� = np

�
Definition 4. Node-observability of a graph. The k � hop node-

observability of a graph G = ðV ;EÞ for np primary nodes, r
ðkÞ
n ðG;

npÞ, is defined as the average fraction of nodes an attacker can

observe, where the expectation is taken over all sets Vp of

size np:

rðkÞn ðG; npÞ = E�Vp

���Vp

��+ ��Vk
o

��
jV j

������Vp

�� = np

�
These two quantities are linked one to another, as shown in

theorem 1.

Theorem 1. LetG = ðV ;EÞbe a graphwith n = jV j nodes, and k

a positive integer. The k � hop node-observability ofG for np pri-

mary nodes is equal to:

rðkÞn ðG;npÞ =
nn

n
+
n � np

n
$
1

n

X
u˛G

rðkÞn;�ðG;np; uÞ

Theorems 2 and 5, whichwe propose and prove, give provable

closed-form expressions for the probability of observation of a

node and the node-observability of a graph. These theorems

rely on the k � hop degree of a node, i.e., the number of other

nodes that are within at most k-hops from that node. (In partic-

ular, note that the 1-hop degree of a node is its degree.) In the

1-hop case, these expressions can be used to estimate node-

observability and probability of observation, using only the full

degree list of the graph. This quantity has been extensively stud-

ied and reported in the network science literature (see, e.g., Bar-

abasi and Albert17 and Watts and Strogatz18).

Theorem 2. Let G = ðV ;EÞ be a graph with n = jV j nodes, and
np %n a number of primary nodes. Let u˛V be a node, the k �
hop probability of observation of u is given by:

rðkÞn;�ðG; np;uÞ =

8>><>>:
1 � Cn� 1�degk ðuÞ

np

Cn� 1
np

if degkðuÞ%n � 1 � np

1 otherwise:
Where degkðuÞ is the k � hop degree:

degkðuÞ = jfv ˛ V\fug : dðu; vÞ % kgj

Theorem 3. Let G = ðV ;EÞ be a graph with n = jV j nodes,

and np %n a number of primary nodes. Let d˛Nn be the distribu-

tionofk � hopdegrees,definedasdi = jfu ˛V : degkðuÞ = i �
1gj. The k � hop node-observability of G is given by:

rðkÞn ðG;npÞ =
np

n
+
n � np

n

Xn

i = 1

difðnp; i � 1Þ

Where f is defined as:

fðnp;dÞ =

8>><>>:
1 � Cn� 1�d

np

Cn� 1
np

if d%n � 1 � np

1 otherwise:

Edge-observability
The edge-observability of a graph quantifies the attacker’s ability

to obtain edge-based information happening in the network

when the data collector has access to np random primary nodes.

Edge-observability can, for instance, be used tomodel the ability

of a government agency to surveil communications occurring on

a phone network.

Definition 5. Probability of observation of an edge. The k � hop

probability of observation of an edge e = ðu;vÞ, in a graphG, for

np primary nodes, r
ðkÞ
e;�ðG;np;eÞ, is defined as the probability that e

is observed, with the probability taken over all sets Vp of size np:

rðkÞe;�ðG;np; eÞ = P�Vp

�
e ˛ Ek

o

����Vp

�� = np

�
Definition 6. Edge-observability of a graph. The k � hop edge-

observability of a graph G for np primary nodes, r
ðkÞ
e ðG; npÞ, is

defined as the expected fraction of the edge-set of a node u

that the attacker can observe, where the expectation is taken

over all sets Vp of size np:

rðkÞe ðG; npÞ = E�Vp

���Ek
o

��
jEj

������Vp

�� = np

�
In theorems 4 and 5, we prove closed-form expressions to es-

timate the edge-observability of a graph and the probability of

an observation of an edge in the k-hop case, using the notion

of k � hop edge-degree, the number of nodes within distance

k � 1 of either extremity of the edge. Importantly, we further-

more show that the average edge-observability can be

computed from the number of nodes only (in the 1-hop case).

Theorem 4. Let G = ðV ;EÞ be a graph with N nodes, and

np %N a number of primary nodes. The k � hop edge-observ-

ability of G is equal to the average k � hop probability of obser-

vation of edges e˛E.

rðkÞe ðG; npÞ =
1

jEj
X
e˛E

rðkÞe;�ðG;np; eÞ

Theorem 5. Let G = ðV ;EÞ be a graph with n = jV j nodes,
and np %n a number of primary nodes. Let e = ðu; vÞ˛E be
Patterns 4, 100662, January 13, 2023 3



Figure 2. 1-hop (light blue), 2-hop (dashed, blue) and 3-hop (dotted, dark blue) edge- and node-observability of synthetic graphs as a function

of the fraction of primary nodes

For each graph, we report the average node-observability (ANO) and average edge-observability (AEO). Shaded area, 1 ± SD around the mean.
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an edge. The k � hop probability of observation of e is

given by:

rðkÞe;�ðG;np; eÞ =

8>><>>:
1 � Cn� edgedegk ðeÞ

np

Cn
np

if edgedegkðeÞ%n � np

1 otherwise

Where edgedegkðeÞ, for e = ðu;vÞ, is the k � hop edge-degree

of e:

edgedegkðeÞ = jfw ˛ V : dðu;wÞ % k � 1ndðv;wÞ % k � 1gj

Corollary 1. Let G = ðV ;EÞ be a graph with n = jV j nodes, and
np %n a number of primary nodes. Let e = ðu; vÞ˛E be an edge.

The 1 � hop probability of observation of e is identical for all

edges, and given by:

rð1Þe;�ðG;np; eÞ = 1 � n � np

n
$
n � np � 1

n � 1

Impact of graph structure
In this section, we empirically investigate how the structure of

the graph impacts its vulnerability to node-based data collec-

tions in the 2- and 3-hop cases. We measure observability for

four families of synthetic graphs: complete graphs, Erd}os-

Rényi,19 Barabási-Albert,17 and Watts-Strogatz18 graphs.

Each graph is generated with a comparable number of nodes

and edges (except for the complete graph, which always has
4 Patterns 4, 100662, January 13, 2023
jEj = jV jðjV j � 1Þ
2 ), but exhibit different structure (see ‘‘empirical

study of observability’’).

First, we validate our theoretical results for 1-hop. We show in

Figure 2 that (1) the 1-hop edge-observability is identical for all

types of graphs, as expected from theorems 4 and 5; (2) the

node-observability and the average probability of observation

of a node are near identical for all number of hops and small

values of np, as expected from theorem 1. Figure 3 shows that

the 1-hop average edge-observability is constant at 2=3 for

increasing graph density, a direct consequence of theorem 1.

It further displays the sharp increase of the 1-hop average

edge-observability with density.

Second, Figure 2 shows the impact of the structure of a

graph on its 2- and 3-hop node- and edge-observability.

More specifically, Barabási-Albert graphs have larger average

observability (for all metrics) than Erd}os-Rényi graphs, which

in turn have slightly higher average observability than Watts-

Strogatz graphs. This is likely due to Barabási-Albert graphs

containing, by design, very high-degree nodes called hubs.

Their high degree makes hubs more likely to be observed

which, in turn, allows an attacker to observe their neighbors

(2-hop) and the neighbors of their neighbors (3-hop), thereby

strongly increasing the observability of the graph. Watts-

Strogatz graphs, on the other hand, present a lattice-like struc-

ture with high clustering coefficient.18 Observing data from pri-

mary nodes is therefore likely to have a fairly local impact on

observability, as opposed to spanning over the entire graph,

hence decreasing the node- and edge-observability of

the graph.



A B C Figure 3. Average 1-hop edge- and node-

observability of graphs with increasing

density

Erd}os-Rényi (A), Barabási-Albert (B), and Watts-

Strogatz (C) graphs. The 1-hop average edge-

observability is constant (thm 5), while the 1-hop

average node-observability increases sharply

with density. Barabási-Albert graphs tend to be

more observable than others, probably due to the

presence of hubs. Shaded area contains all data

points except the top and bottom 5%.
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Social networks
In 2018, it was revealed that Cambridge Analytica, a UK com-

pany, had obtained data from about 70M US Facebook profiles

through an innocuous-looking app. Once installed, the app

would collect the data of the person who installed it as well as in-

formation about their Facebook friends (1-hop).20,21 This led to

investigations by several governments, including the UK and

the US, and resulted in Facebook receiving a record $5 billion

fine from the FTC.22 This was, to the best of our knowledge,

the first major instance of a node-observability attack based

on node-intrusions on social networks.

Using ourmodel, theorem 2 and the shifted degree distribution

of Facebook users in the US,4 wewere able to quantify the 1-hop

node-observability of the Facebook network. Figure 4B shows

that, for the reported 270,000 app installs, the attacker should

have been able to observe 68.0M profiles ðrð1Þn ðG; npÞ =

0:318Þ. This contradicts initial reports that data about 50M peo-

ple had been breached, and is very close to later reports by

Facebook that 70.6M US accounts had been breached.21 Simi-

larly, our results show that, with 1M reported app installs, theOb-

ama campaign might have had access to data of up to 94.8M

people ðrð1Þn ðG;npÞ = 0:510Þ.
Theorem 5 furthermore allows us to derive r

ð1Þ
n;�ðG; np; uÞ, the

probability of a person to have had their data collected, as a

function of their degree degðuÞ. Figure 4A shows that an average

user had a 36% chance of having their profile collected by Cam-

bridge Analytica and 79% by the Obama Campaign. Users with

as little as 100 Facebook friends would have had a 12.3%

(respectively 41.7%) risk of having their profile collected byCam-

bridge Analytica (resptively, the Obama campaign), while these

numbers increase to 48.2% (respectively, 93.2%) for users

with 500 friends.

Finally, we evaluate the effectiveness of these attacks under a

2-hop policy, i.e., allowing apps to collect data on not only the

friends, but also the friends of friends, of accounts installing
A B
them. Using a synthetic Facebook graph based on the configu-

ration model23 and the known degree distribution, we show that

a 2-hop policy would have allowed both Cambridge Analytica

and the Obama campaign to observe virtually every single US

profile. We provide more details on our experimental methodol-

ogy in the section S2.

Note that, although the error we observe between the node-

observability of the model and the value published is relatively

low ð3:7%Þ, this is only one data point. Our estimator has two

main sources of error: (1) the estimation of the degree distribu-

tion from 2011 data, and (2) whether our assumption that primary

nodes are sampled uniformly at random holds. Further work is

needed to quantify the impact the different sources of error

have on the accuracy of the model. This is, however, challenging

as an empirical analysis of error (2) would require data frommany

real-world attacks.

Mobile phone networks
Surveillance of mobile phone networks was one of the first and

most significant revelations by whistleblower Edward Snowden

in 2013. The list of who we talked to on the phone—the edges

of our social graph—is sensitive and considered private by

63% of Americans.24 Recognizing that this information might

help fight crimes and terrorism, legislation allowing law enforce-

ment to access a suspect’s mobile phone records have been

enacted in the past two decades around the world.25,26 Several

of these legislations, including in the US, also allow agencies to

collect the mobile phone records (edges) of people up to two

hops from the suspects (contacts of contacts), effectively

recording communications occurring along 3-hop edges. For

instance, in an attempt to curb illegal immigration, the US Border

Patrol was allowed to use call logs to confirm the legal status of

their potential target and to search for other potential illegal im-

migrants among the target’s contacts.27 Similarly, the USA

PATRIOT act allowed intelligence agencies to collect phone
Figure 4. Node-observability of the Face-

book network in 2014
(A) Probability of a node being observed by

Cambridge Analytica or the Obama campaign as a

function of the node’s degree. The vertical dashed

line is the average number of friends in 2014.

(B) Node-observability (in absolute numbers)

of the network as a function of the number of pri-

mary nodes (accounts installing the app), for

1- and 2-hops.
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A B Figure 5. 2-hop and 3-hop edge-observ-

ability of a mobile phone network

(A) 2- and 3-hop average edge-observability (top),

and edge-observability when 0.01% of the nodes

are primary (bottom), of the real phone network as

the observation window increases (in log-scale).

(B) Comparison of the average edge-observability

of the real phone network (observation window of

7 days) and synthetic networks with the same

number of nodes and edges.
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records of people up to three hops from suspects. This number

was reduced to two hops in 2015, following the Snowden

revelations.28

Here, we use a real-world mobile phone dataset of 1.4M peo-

ple over 1 month to study and quantify the potential of node-

based data collections for surveillance. In this attack, we

consider two nodes to be connected to one another if they inter-

acted (call or text) at least once in the time period studied.

Figure 5A shows that, under the previous 3-hop policy, collect-

ing data from 0.01% of the population would allow an attacker to

surveil 86.6% of all the communications happening in the

network (edge-observability of the graph). While the new 2-hop

policy decreases those numbers, we found that it still allows an

attacker to surveil 18.6% of all the communications. Finally, we

show that the average edge-observability, when 1% of the

network is primary, (1) increases sharply with the length of the

observation period and (2) already reaches 53.3% when

observing only one day of mobile phone metadata in the

3-hop case.

Figure 5B shows that the edge-observability of the phone

network (7-day observation period) is comparable with that of

a Barabási-Albert graph with similar density and number of no-

des. As our previous results show, this is likely due to the pres-

ence of hubs in the mobile phone network. Figure 6 shows that

both graphs have a similar degree distribution, including hubs,

as is expected from previous research.29

Close proximity networks
Mobility data are considered to be among the most sensitive

data currently being collected.24 Here, we use real-world Blue-

tooth close proximity data to investigate the feasibility and reach

of a distributed node-observability attack through proximity

sensing by compromised apps (e.g., a fake ‘‘flashlight’’30) or

contact tracing apps. In this attack, an attacker monitors the

location of nearby uncompromised devices using the GPS loca-

tion and sensing capabilities of compromised (primary) phones.

We empirically estimate the node-observability of this attack on

aco-locationdataset of600peoplecollectedaspart of theCopen-

hagen Networks Study in 2014.31 We extract hourly co-location
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graphs of phones who sensed each other

within that hour, for different time periods

and spatial regions (all of 1 km2, see Fig-

ure 8A). From these hourly graphs, we

compute the average probability of obser-

vationof a nodeasa functionof thenumber

of primary nodes per km2, and fit an

approximation curve bmðnpÞ = minð1;max
ð0;A logðnpÞ +BÞÞ ðR2 = 0:876Þ. From publicly available census

data, we extract the population count in each 1 km2 cell. We then

combine thesecountswith bmð�Þ toestimate thenode-observability

of large cities (see ‘‘observability of cities’’ and section S3 formore

details). In Figure 7, we compare the network properties of two

hourly graphs (one during daytime and the other during nighttime)

with graph models. We show that the nighttime graph is well

approximatedbyaBarabási-Albert graph,while thedaytimegraph

hasabi-modaldegreedistribution that is notwell approximatedby

the graph models we consider.

Figure 8B shows that, using this attack in London, an attacker

might be able to observe the location of as much as 57% of in-

dividuals (resp. 86%) with only 1% (resp. 10%) of the population

installing the app, giving an average node-observability of 0.95.

Other dense cities we considered—Chicago, Los Angeles, and

Singapore—display a similarly large ð> 0:876Þ average node-

observability.

Conversely, the attack is a lot less effective in sparsely popu-

lated areas where the average degree of the close proximity net-

works is lower. For instance, we estimate that in Utah (15 people

per km2 on average, while London has 4,500) an app installed by

1% (resp. 10%) of the population would allow an attack to

observe only 9% (resp. 38%) of individuals in the state, an

average node-observability of 0.70.

Although the dataset we use is from 2014, we believe that our

results still apply to modern datasets. Indeed, we do not expect

human mobility to have changed significantly (outside of the

COVID-19 pandemic) between 2014 and now. In the discussion,

we further discuss how mobile phone applications could be

leveraged to perform a similar attack.

DISCUSSION

Previous quantitative works have explored the impact of groups

on individual privacy through the privacy loss incurred by homo-

phily, the similarity between connected individuals in social net-

works32 as the right of individuals to keep their affiliation with a

group33–35—a religion, a sexual orientation, a disease, etc.—pri-

vate. Researchers have then developed technical solutions to



A B Figure 6. Network properties of our phone

network and three synthetic graphs

(A) Modularity and average clustering coefficient

for the mobile phone network and three synthetic

graphs with identical number of nodes and density.

Watts-Strogatz’s resulting average clustering co-

efficient is the closest one to that of our phone

network.

(B) Degree distribution for the mobile phone data-

set network and the synthetic graph models with

equal number of nodes and density. The degree

distribution of a Barabási-Albert graph appears to

be the closest one to the empirical distribution.
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protect this affiliation (such as t-closeness36 or group-based

obfuscation37).

Extensive prior work also studied the robustness of networks

to node removal.38 Similarly to our work, nodes (and potentially

their l � hop neighborhood39) are compromised. However, the

focus of such work is on estimating the impact of compromised

node on the connectivity of the graph and its percolation clus-

ters. Our work here focuses on the observability of graphs and

its impact on privacy.

In our mobile phone network experiment, we assumed that the

data collector could gain access to a large number of primary no-

des. In practice, surveillance in phone networks is happening in

numerous countries, sometimes at large scale. For instance,

ANTENJ, a French national agency dedicated to ‘‘numerical judi-

ciary investigations’’ has over 10,000 phone numbers under sur-

veillance at any point in time.26 To the best of our knowledge, the

only quantitative study of surveillance of phone networks has

been conducted by Mayer et al.28 It concluded that hubs in-

crease the number of nodes that can be reached through 3

hops. Their analysis is, however, entirely based on a discon-

nected dataset of less than 1,000 users collected through an

app. The small size of the dataset and the inherent sampling

bias prevented them from (1) quantifying the potential of node-

based intrusions for mass and targeted surveillance, (2)

comparing their results to graph models, and (3) showing the

importance of the graph’s clustering coefficient in edge-

observability.

In close proximity tracking attacks, phones could for instance

be compromised by malware, code embedded by third-parties,
A

B

or legitimate applications, such as contact tracing apps. The

Judy malware was for instance estimated to have infected

36M devices worldwide,40 while a fake flashlight app was

discovered to collect data from tens of millions of users.41 The

UK start-up Tamoco, which reported having deals to embed their

code in 1,000 Android apps, giving them access to 100M de-

vices,42 while the software of US company SignalFrame uses

WiFi to scan for nearby devices and record their location.43

Similarly, Pegasus, a spyware developed by NSO, has been

employed to compromise the devices of targeted journalists,

politicians, and activists in multiple countries.44 Finally, contact

tracing applications, such as those designed to measure the

spread of COVID-19, are designed to track co-location of neigh-

boring phones45 by having phones broadcast a unique identifier.

If identifiers are consistent or linkable across time, they could be

used for large-scale co-location tracing.

Close proximity data can be collected through Wi-Fi or Blue-

tooth. Attacks based on Wi-Fi are either passive, where the

app simply observes probe requests that mobile phones send

to sense nearbyWi-Fi hotspots, or active, running a fake hotspot

with a common SSID (e.g., attwifi, xfinitywifi) for nearby

phones to connect to.46 While more complex, the latter by-

passes MAC address randomization used by some operating

systems, including relatively recent versions of both Android

and iOS.47,48 The two main platforms are thus moving toward

re-randomization of the MAC address even when connecting

to previously known networks.49 These changes will, however,

take years to reach all smartphone users. Attacks based onBlue-

tooth, originally considered less likely, might be enabled by
Figure 7. Network properties of daytime and

nighttime close proximity networks

(A) Degree distribution for the Copenhagen Net-

works Study networks (a day snapshot and a night

snapshot) and the synthetic graph models with

equal number of nodes and density. The day

snapshot has a bimodal degree distribution that is

not well reflected by any synthetic network. The

night snapshot has a degree distribution similar to

a Barabasi-Albert network.

(B) Modularity and average clustering coefficient

for Copenhagen Networks Study networks and

three synthetic graphs with identical number of

nodes and density. Watts-Strogatz’s resulting

average clustering coefficient is the closest one to

day snapshot of CNS. The night snapshot is too

sparse to meaningfully calculate clustering and

modularity. Overall, the considered graph models

are not a good fit for close proximity networks.
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Figure 8. Observability of a co-location

network and estimation of the node-observ-

ability of cities

(A) Compromised devices sense the presence of

other devices within the observation range. This

creates, for each time period, a co-location graph

on which we compute local and global node

observability.

(B) Node-observability in cities using exact census

data ðANOCÞ and estimation by an exponential

distribution ðANOEÞ. Inset: distribution of the

population per block of 1 km2 of each city.
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recent uses of Bluetooth for contact tracing apps against

COVID-19.45 Notably, the use of frequent Bluetooth MAC

address and broadcast payload randomization in these apps

lowers the privacy threat. A motivated attacker may, however,

still track either very partial location histories or recent histories

of the users who report themselves COVID-positive.50,51

Close proximity sensing also presents an additional risk: pri-

mary users also reveal which other users they interact with, i.e.,

the edges of their close proximity network along with potentially

other information, such as the time of the interaction or dis-

tance between the two phones. This risk has been heavily dis-

cussed in the case of contact tracing apps relying on the so-

called centralized model.51 Corollary 1 shows that the resulting

edge-observability (fraction of the edges observed) is indepen-

dent from the graph’s structure, being equal to 1 � n� nc
n $

n� nc � 1
n� 1 z1 � 	

1 � nc
n


2
. This means that a contact tracing

app that would report 15 days of a user’s interactions to a

server once that user is diagnosed positive would reveal, on

average, 2.0% of the 15 days social graph to the server if

1% of the population is infected; and 18.9% if 10% of the pop-

ulation is infected. While network effects are still at play, they

are a lot less strong than in the edge-observability case.
Table 1. Node-observability r
ð1Þ
n ðG; npÞ for the 2014 Facebook

graph and np = 270;000 accounts observed when the maximum

degree is capped

Degree cap Fraction of nodes affected (%) Observability

5,000 0.00 0.329

4,000 0.03 0.329

2,000 0.29 0.329

1,000 2.94 0.326

500 17.21 0.305

250 49.23 0.243

The observability only decreases slightly with the cap, except when a

large fraction of nodes are affected.
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The attacks wemodel exploit the struc-

ture and connectedness of networks. We

therefore believe the main mitigation to

be to limit access to the networks as

described earlier in this section. Another

potential approach would be to modify

the network in order to limit its observ-
ability. Here, we study whether capping the maximum degree

that nodes can have in a network reduces the risk. We apply

this cap to the social network setup (see results), starting

from 5,000 (the maximum degree of that graph). We repeat

our 1-hop analysis, measuring node-observability for np =

270;000, with a capped degree distribution bPk obtained by

counting all nodes with degree higher than k as nodes with de-

gree k ( bPkðkÞ =
P5000

i = k
bPkðiÞ and bPkðiÞ = 0;ci > k). We show in

Table 1 that, unless the cap is large enough to affect a significant

fraction of all users ð> 20%Þ, the node-observability of the

network remains largely unchanged. Protecting users from at-

tacks by capping the maximum degree of nodes thus comes

at a steep cost in utility, which might not be acceptable in

practice.

This work is, to the best of our knowledge, the first to formalize

and develop graph-theoretic models to understand the reach

and therefore proportionality of modern data collection. Our re-

sults shed light on how network effects can have a strong detri-

mental impact on our privacy. The reliance on network effects to

collect data by Cambridge Analytica is one of the first large-scale

examples of a node-based data collection and is unlikely to be

the last. We believe models like the one we present here to be

essential to reason about data collection in networked environ-

ments. Moving forward, we hope this work can help evaluate

the scope of data collections mechanisms and technologies

and ensure their proportionality.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Yves-Alexandre de Montjoye (deMontjoye@

imperial.ac.uk).

Materials availability

There are no physical materials associated with this study.

Data and code availability

Code to compute both edge and node observability and data will be made

available at https://github.com/computationalprivacy/network-privacy.
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The mobile phone data cannot be made available for privacy and confiden-

tiality reasons. Instead, we will make available synthetic data for the mobile

phone graph using the Barabási-Albert graph model. The social network

data are available from Ugander et al.4 The Copenhagen dataset is available

at Sapie _zy�nski et al.52 Finally, we will make the population and area data about

cities available.

Proofs

In order to prove the theorems in the paper, we introduce a useful lemma.

Lemma 1. LetG = ðV ;EÞ be a graph with n = jV j nodes, np % N a number of

primary nodes, and S3V. The following holds when Vp is drawn uniformly at

random:

P�Vp3V ½du ˛ Vp : u ˛ S
�� ��Vp

�� = np� =

8>><>>:
1 � Cn� jSj

np

Cn
np

if jSj%n � np

1 otherwise

Proof. First, we rewrite the probability by considering its negation:

P�Vp3V ½du˛Vp : u˛Sj��Vp

�� = np� = 1 � P�Vp3V ½cu˛Vp : u;S
����Vp = np�

= 1 � P�Vp3V ½VpWS = Bj��Vp

�� = np�
= 1 � P�VpWV ½Vp3V\Sj��Vp

�� = np�

Writing this probability in expectation of an indicator form yields:

P�Vp3V ½Vp 3V\Sj��Vp

�� = np� =
X

vp3V ;jvpj = np

P½Vp = vp�$I
�
vp 3V\S

�

Since Vp is drawn uniformly at random, and a set of size n hasCn
np

subsets of

size np, hence:

P½Vp = vp� =
1���vp3V :
��vp�� = np

���
Furthermore, we have that, by definition:X

vp3V ;jvpj = np

I
�
vp 3V\S

�
=

���vp 3V\S :
��vp�� = np

���
The number of subsets of size np of a set of sizem isCm

np
. Also, since thatS3

V, jV\Sj = jV j � jSj, and hence we obtain:

P�Vp3V ½Vp 3V\Sj��Vp

�� = np� =

���vp3V\S :
��vp�� = np

������vp3V :
��vp�� = np

��� =
C

n� jSj
np

Cn
np

Theorem 1. Let G = ðV ;EÞ be a graph with n = jV j nodes, and k a positive

integer. The k � hop node-observability of G for np primary nodes is equal to:

rðkÞn ðG; npÞ =
nn

n
+
n � np

n
$
1

n

X
u˛G

rðkÞn;�ðG; np; uÞ

Proof. By definition and linearity of the expectation, we have (for the sake of

clarity, we omit the conditional on
��Vp

�� = np in expectations):

rðkÞn ðG; npÞ = E�Vp

���Vp

��+ ��Vk
o

��
jV j

�
=

np

n
+
1

n
$E�Vp

���Vk
o

���
To compute the last term, we write

��Vk
o

�� as the sum of the indicator of

whether a node is in Vo:

E�Vp

���Vk
o

��� = E�Vp

"X
u˛G

I
�
u ˛ Vk

o

�#
=

X
u˛G

P�Vp

�
u ˛ Vk

o

�
To relate P�Vp

½u ˛Vk
o � to r

ðkÞ
n;�ðG; np; uÞ, we develop it conditionally to the

event u˛Vp, as, for any node u˛G:

P�Vp

�
u˛Vk

o

�
= P�Vp

�
u˛Vk

o

��u˛Vp

�
P�Vp

½u˛Vp�+
P�Vp

�
u˛Vk

o

��u;Vp

�
P�Vp ½u;Vp�
By definition, VpXVk
o = B, and thus the first term is zero. Since Vp is a set of

np nodes selected uniformly at random from n nodes, P�Vp
½u;Vp� =

n� np
n . Hence:

P�Vp

�
u ˛ Vk

o

�
=

n � np

n
$rðkÞn;�ðG; np; uÞ

Theorem 2. LetG = ðV;EÞ be a graph with n = jV j nodes, and np % n a num-

ber of primary nodes. Let u˛V be a node, the k � hop probability of observa-

tion of u is given by:

rðkÞn;�ðG; np; uÞ =

8>><>>:
1 � Cn� 1�degk ðuÞ

np

Cn� 1
np

if degkðuÞ%n � 1 � np

1 otherwise:

Where degkðuÞ is the k � hop degree:

degkðuÞ = jfv ˛ V\fug : dðu; vÞ % kgj

Proof. First, from the definition of Vo, we obtain:

rðkÞn;�ðG; np; uÞ = P�Vp3V

�
u˛Vk

o

��u;Vp;
��Vp

�� = np

�
= P�Vp3V ½dv˛Vp : dðu; vÞ% kju;Vp;

��Vp

�� = np�
= P�Vp3V ½dv˛Vp : dðu; vÞ% kjVp3V\fug; ��Vp

�� = np�
= P�Vp3V ½dv˛Vp : v˛ neighkðuÞjVp3V\fug; ��Vp

�� = np�

Where neighkðuÞ = fv ˛V\fug : dðu; vÞ % kg. Note that, jneighk
ðuÞj = degkðuÞ.
Define G0 = ðV 0; E0Þ = ðV\fug; E\E½u�Þ, the graph without u. We can

then write:

rðkÞn;�ðG; np; uÞ = P�Vp3V 0 ½dv˛Vp : v˛ neighkðuÞj
��Vp

�� = np�

Since neighkðuÞ3V 0, we can apply lemma 1 on G0 with S = neighkðuÞ
(observe that jV 0 j = n � 1), which concludes the proof.

Theorem 3. LetG = ðV;EÞ be a graph with n = jV j nodes, and np % n a num-

ber of primary nodes. Let d˛Nn be the distribution of k � hop degrees,

defined as di = jfu ˛V : degkðuÞ = i � 1gj. The k � hop node-observability

of G is given by:

rðkÞn ðG; npÞ =
np

n
+
n � np

n

Xn

i = 1

difðnp; i � 1Þ

Where f is defined as:

fðnp;dÞ =

8>><>>:
1 � Cn� 1�d

np

Cn� 1
np

if d%n � 1 � np

1 otherwise:

Proof. This follows immediately from theorems 1 and 2, using the fact that

the probability of observation of a node depends only on its degree.

Theorem 4. LetG = ðV;EÞ be a graph with n = jV j nodes, and np % n a num-

ber of primary nodes. Let d˛Nn be the distribution of k � hop degrees,

defined as di = jfu ˛V : degkðuÞ = i � 1gj. The k � hop node-observability

of G is given by:

rðkÞn ðG; npÞ =
np

n
+
n � np

n

Xn

i = 1

difðnp; i � 1Þ

Where f is defined as:

fðnp;dÞ =

8>><>>:
1 � Cn� 1�d

np

Cn� 1
np

if d%n � 1 � np

1 otherwise:
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Algorithm 1. Node-observability of a city

1: procedure NODEOBSCITY(nB;B;x)

2: population)
P

iBi

3: observed)0

4: for i = 1;.; nB do

5: mi)x$Bi

6: observed+ = ðx + ð1 � xÞ $bmðmiÞÞ$Bi

7: end for

8: return observed=population

9: end procedure
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Proof. By definition, and rewriting
��Ek

o as a sum of indicator functions for el-

ements of E:

rðkÞe ðG; npÞ= E�Vp

���Ek
o

��
jEj

������Vp

�� = np

�

=
1

jEjE�Vp

"X
e˛E

I
�
e˛Ek

o

�����Vp

�� = np

#

=
1

jEj
X
e˛E

P�Vp

�
e˛Ek

o

����Vp

�� = np

�
=

1

jEj
X
e˛E

rðkÞe;�ðG; np; eÞ

Theorem 5. Let G = ðV;EÞ be a graph with n = jV j nodes, and np % n a

number of primary nodes. Let e = ðu; vÞ˛E be an edge. The k � hop proba-

bility of observation of e is given by:

rðkÞe;�ðG; np; eÞ =

8>><>>:
1 � Cn� edgedegk ðeÞ

np

Cn
np

if edgedegkðeÞ% n � np

1 otherwise

Where edgedegkðeÞ, for e = ðu; vÞ, is the k � hop edge-degree of e:

edgedegkðeÞ = jfw ˛ V : dðu;wÞ % k � 1ndðv;wÞ % k � 1gj

Proof. We develop the probabilities, using the definition of Eo and the defi-

nition of conditional probabilities:

rðkÞe;�ðG; np; eÞ= P�Vp ½e˛Eoj
��Vp

�� = np�
= P�Vp3V ½dw˛Vp : dðu;wÞ% k � 1ndðv;wÞ% k � 1

��Vp

�� = np�
= P�Vp3V ½dw˛Vp : w˛ eneighkðeÞ

����Vp

�� = np�

Where eneighkðeÞ = fw ˛V : dðu;wÞ % k � 1ndðv;wÞ % k � 1g. Note that

jeneighkðeÞj = edgedegkðeÞ, by definition. We then apply lemma 1 for G and

S = eneighkðeÞ, which concludes the proof.

Corollary 1. Let G = ðV ;EÞ be a graph with n = jV j nodes, and np % n a

number of primary nodes. Let e = ðu; vÞ˛E be an edge. The 1 � hop proba-

bility of observation of e is identical for all edges, and given by:

rð1Þe;�ðG;np; eÞ = 1 � n � np

n
$
n � np � 1

n � 1

Proof. Observe that for k = 1 and for any e = ðu;vÞ˛E:

edgedeg1ðeÞ = jfw ˛ dðu;wÞ % 0ndðv;wÞ % 0gj = jfu; vgj = 2

The result then follows from theorem 4.

Datasets

Phone dataset

Our phone dataset comprises 4 weeks of domestic intra-company communi-

cations phone logs (calls and texts) of 1.4M customers of a mobile phone

provider.

Co-location dataset

The dataset contains mobility information of about 600 students at a European

university collected over amonth (retrieved via GPS,Wi-Fi, or a combination of

the two) along with Bluetooth sensing data (every 5 min), as part of the Copen-

hagen Networks Study.31

Empirical study of observability

We study graphs generated from four models: a complete graph and three

random graphs with an average density of 0.015; a Erd}os-Rényi graph (with

p = 0:015), a Barabási-Albert graph (withm = 2), and aWatts-Strogatz graph

(with k = 5 and p = 0:2), eachwith 250 nodes.17–19We estimate the node- and

edge-observability for each graph type, graph size, and number of primary no-

des np by selecting 500 random sets VC of np nodes, measuring
��Ek

o

�� and ��Vk
o

��.
The curves we report are the average over these sets. To model the influence
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of graph density on observability (Figure 3), we repeat the same procedure for

densities ranging from 0.01 to 0.3, by changing the parameters p;m and k of

the graph models.

Observability of cities

In order to estimate the average probability of observation as a function of the

number of primary nodes for an area of 1 km2, we compute hourly graphs from

the co-location dataset (Figure 8A), and fit an approximation of the average

probability of observation 1
jV j
P

u˛Vr
ðkÞ
n;�ðG; np; uÞ for nC primary nodes of the

form bmðnpÞ = 0:13 logðnpÞ � 0:05 ðR2 = 0:876Þ. We use census data to

compute population density in blocks of 1 km2.

Finally, we use algorithm 1 to estimate node-observability of a city when a

fraction x of the population is part of the primary data collection, with nB the

number of blocks in a city, and B a list of nB elements, the population size in

each block (given by census data). Algorithm 1 estimates the average proba-

bility of observation in each block using the approximation bmð�Þ, then scales it

to obtain the node-observability (Thm. 1).
Sometimes, detailed census datamight not be available. Figure 8C also shows

that the node-observability in the cities we considered can be reasonably well

approximated by using an exponential distribution for the distribution of the

population per km2 in the city (as an approximation of the actual distribution).

The parameter l of the exponential is the density of the entire city l = population
area .

This allows for the global node-observability of a city—the fraction of the pop-

ulation observed by an attacker—to be readily estimated knowing only the

population and area of the city.

This extrapolation from the CNS data to cities relies on two assumptions.

First, it assumes that the probability for an individual to be observed depends

only on the absolute number of primary people it might encounter ðnpÞ in the

cell, and not its total population. Second, it assumes that themobility of people

in the CNS dataset resembles that of the population of cities. This does not ac-

count for differences in lifestyle, geography, or population type. However, we

believe this to be the first attempt at estimating the risk of mass surveillance in

large cities based on actual co-location data, and look forward to future work

exploring this question.
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